Feature selection for modular GA-based classification
نویسندگان
چکیده
منابع مشابه
Feature selection for modular GA-based classification
Genetic algorithms (GAs) have been used as conventional methods for classifiers to adaptively evolve solutions for classification problems. Feature selection plays an important role in finding relevant features in classification. In this paper, feature selection is explored with modular GA-based classification. A new feature selection technique, Relative Importance Factor (RIF), is proposed to ...
متن کاملFilter – GA Based Approach to Feature Selection for Classification
This paper presents a new approach to select reduced number of features in databases. Every database has a given number of features but it is observed that some of these features can be redundant and can be harmful as well as and can confuse the process of classification. The proposed method applies filter attribute measure and binary coded Genetic Algorithm to select a small subset of features...
متن کاملAn optimal feature subset selection using GA for leaf classification
This paper describes an optimal approach for feature extraction and selection for classification of leaves based on Genetic Algorithm (GA). The selection of the optimal features subset and the classification has become an important methodology in the field of Leaf classification. The deterministic feature sequence is extracted from the leaf images using GA technique, and these extracted feature...
متن کاملFeature Selection for Classification by Using a Ga-based Neural Network Approach
This paper proposes a method of genetic algorithm (GA) based neural network for feature selection that retains sufficient information for classification purposes. This method combines a genetic algorithm with an artificial neural network classifier, such as back-propagation (BP) neural classifier, radial basis function (RBF) classifier or learning vector quantization (LVQ) classifier. In this a...
متن کاملFeature Selection for Descriptor Based Classification Models. 1. Theory and GA-SEC Algorithm
The paper describes different aspects of classification models based on molecular data sets with the focus on feature selection methods. Especially model quality and avoiding a high variance on unseen data (overfitting) will be discussed with respect to the feature selection problem. We present several standard approaches and modifications of our Genetic Algorithm based on the Shannon Entropy C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Soft Computing
سال: 2004
ISSN: 1568-4946
DOI: 10.1016/j.asoc.2004.02.001